Разглядываем нейроны в мозге дрозофилы
В начале октября 2024 года международная команда ученых представила первый полный коннектом взрослого насекомого — самки плодовой мухи дрозофилы. Он стал самым сложным из картированных на данный момент. За основу работы были взяты полученные ранее электронно-микроскопические снимки всего объема мозга дрозофилы с посинаптическим разрешением (всего около 100 теравокселей).
Для анализа изображений был специально создан консорциум FlyWire, который в итоге провел реконструкцию коннектома с помощью машинного обучения. В таком процессе неизбежны ошибки — в их исправлении участвовали ученые и добровольцы со всего мира, потратив на это 33 человеко-года. После этого данные интегрировали с результатами нескольких других визуализационных исследований.
Итоговую сборку и анализ коннектома выполнили научные группы под руководством Себастьяна Сына (Sebastian Seung) из Принстонского университета, а также Грегори Джеффриса (Gregory Jefferis) из Кембриджского университета и Дэви Бок (Davi Bock) из Вермонтского университета. Консорциум FlyWire значится соавтором работы.
Посмотрим внимательнее, что в итоге удалось собрать ученым.
Полная схема нейронов дрозофилы и связей между ними включает 139255 клеток и 54,5 миллиона синапсов, которые управляют всеми жизненными процессами мухи — от сенсорного восприятия до принятия решений и контроля действий. Это интегральное изображение включает все картированные нейроны:
Исследователи идентифицировали 8453 типа нейронов, 4581 из которых были ранее неизвестны. Все они принадлежат к девяти надклассам: чувствительные, двигательные, эндокринные, восходящие, нисходящие, зрительные проекционные, зрительные центробежные, а также формирующие связи в пределах центрального отдела и зрительных долей.
Большинство мультисинаптических связей между отдельными нейронами состоят менее чем из 10 синапсов, однако почти 16 тысяч таких соединений включают более ста синапсов, а 27 — более тысячи. Сами нейроны сильно различаются не только по функциям и связям, но и по морфологии и размеру.
Одна из важнейших характеристик нейронов — это основной вырабатываемый ими нейромедиатор. Исследователи рассчитали эти параметры для всех шести низкомолекулярных нейромедиатора насекомого. Здесь синим цветом отмечены нейроны, которые синтезируют гамма-аминомасляную кислоту (ГАМК), желтым — ацетилхолин, розовым — глутамат.
Авторы работ и добровольцы FlyWire не только охарактеризовали нейроны и связи между ними в целом. Они проанализировали морфологию клеток, их основные и второстепенные связи, в том числе мультисинаптические, а также биомаркеры их функций и происхождения из стволовых клеток, чтобы определить в мозге мухи системы, отвечающие за конкретные функции: восприятие сенсорной информацией, принятие решений на ее основе и контроль движений. Вот некоторые из этих систем.
Эти нейроны отвечают за восприятие брачных «песен», которые самцы издают жужжанием крыльев с разным тембром:
А эти клетки помогают самке, услышавшей «песню» принять решение, подходит ли ей партнер:
Dm4-клетки сетчатки интегрируют информацию о свете и цвете от фоторецепторов:
Гигантские амакриновые CT1-клетки обеспечивают двигательные реакции на снижение или повышение освещения. В мозге дрозофилы их всего две — по одной в каждом полушарии, но каждая выполняет функцию 750 отдельных нейронов.
Насколько сложно устроена система зрительного восприятия, можно понять по принципиальной схеме. Упрощенная версия включает только основные вводы и выводы нейронных связей, не выходящих за пределы зрительных долей мозга:
Отдельные нейроны отвечают за распознавание движений. На рендере клетки, окрашенные желтым и розовым отвечают за распознавание горизонтальных движений, голубые клетки — вертикальных:
Клетки Болта (названные в честь Усейна Болта) отвечают за быстрое движение вперед:
У дрозофилы есть специальные нейроны, которые позволяют ей ходить задом наперед. Исследователи из FlyWire прозвали их клетками «лунной походки» (moonwalker neurons).
Но любое движение — хоть вперед, хоть назад — нужно вовремя прекратить. Для этого тоже есть выделенные сети нейронов, которые могут остановить движение — плавно или резко, в зависимости от контекста.
Для навигации у насекомого есть EPG-клетки, которые используют информацию о движениях дрозофилы для ориентирования в пространстве. Из-за своего предназначения в мозге мухи эти клетки формируют кольцевидную структуру.
DPM-клетки, иннервирующие нейропили (грибовидные тела), необходимы для сна и консолидации памяти. Их общая длина составляет 7,7 сантиметра, а их реконструкция усилиями добровольцев FlyWire потребовала более полутора тысяч правок.
Со времени появления первых результатов работы FlyWire в 2020 году их уже использовали более чем в полусотне научных работ. Даже одновременно с основными публикациями о коннектоме взрослого насекомого вышли еще семь статей.
Теперь, когда коннектом собран полностью и выложен в открытый доступ, исследования нейробиологии насекомых (и фундаментальных принципов работы мозга в целом) вполне могут сделать качественный скачок вперед. По крайней мере, серьезные основания для этого уже есть.
Но одинаковая одежда ныряльщиков их запутала
Ученые из Института поведения животных Общества Макса Планка во главе с Маэланом Томашеком (Maëlan Tomasek) обнаружили, что дикие рыбы могут запоминать и узнавать отдельных людей. Сначала исследователи обучили два вида рыб — чернохвостую обладу (Oblada melanura) и карася-многозуба (Spondyliosoma cantharus) — следовать за дайвером в желтых ластах, чтобы через пятьдесят метров получить лакомство. Затем под воду спустились уже два экспериментатора — в желтых и синих ластах; остальное их снаряжение тоже слегка различалось. Они поплыли в разные стороны, чтобы спустя пятьдесят метров остановиться и либо вознаградить рыб, которые приплыли следом, либо нет. Дайвер в желтых ластах всегда давал рыбам лакомство, а в синих — никогда не давал. После нескольких таких испытаний большинство рыб стало следовать за дайвером в желтых ластах. В конце концов ученые надели одинаковые гидрокостюмы и повторили эксперимент — но теперь рыбы не различали их.