Его эффективность составила 78 процентов
Японские физики создали сверхпроводящий детектор одиночных фотонов шириной 20 микрометров. Вне зависимости от поляризации эффективность регистрации фотонов в нем составляет около 78 процентов, говорится в статье, опубликованной в журнале Optica Quantum.
Однофотонные детекторы — одна из ключевых технологий в квантовой оптике и информатике. Например, они используются для передачи и шифрования информации. Чаще всего в качестве однофотонных детекторов используют сверхпроводящие проволочки, имеющие характерную толщину порядка сотни нанометров. Такие детекторы имеют ряд ограничений, начиная от сложности производства и заканчивая зависимостью эффективности регистрации фотонов от их поляризации. Эти проблемы могут быть решены при увеличении толщины сверхпроводящих полосок до нескольких микрометров. Однако регистрация одиночных фотонов в сверхпроводящих детекторах с характерной толщиной в несколько десятков микрометров — до сих пор сложная задача. Основной проблемой на этом пути является рост темнового тока при увеличении толщины детекторов.
Физики под руководством Масахиро Ябуно (Masahiro Yabuno) из Национального института информации и коммуникационных технологий в Кобе представили первый широкий сверхпроводящий однофотонный детектор на основе нитрида ниобия титана NbTiN. Его ширина составила 20 микрометров, а проблему темнового тока ученые решили, изменив структуру детектирующей полоски. В новом детекторе создавалось сразу два разных критических тока, причем краевые области имели более высокие критические токи, чем центральная. Такая структура блокирует вихревое проникновение токов в центральную область, тем самым уменьшая темновой счет. Это позволяет равномерно приложить более высокий ток смещения к центральной области полосы. При этом боковые области полосы не задействованы при регистрации фотонов, что уменьшает влияние на характеристики детектора возможных краевых дефектов, возникающих при производстве.
Чтобы добиться такой структуры, физики облучали центральную область полоски нитрида ниобия титана пучком ионов аргона. Такая процедура эффективно снижает критическую температуру и максимальный ток в тонкой сверхпроводящей полосе. Ученые отмечают, что на сегодняшний день неизвестно, почему пучок ионов аргона так действует на сверхпроводящую полоску. Однако при помощи такого метода Ябуно с коллегами создали образец однофотонного детектора с новой сверхпроводящей структурой.
Ученые сравнили характеристики нового детектора с детектором такой же ширины, изготовленным обычным способом, а также с детектором, который подвергся облучению ионами аргона по всей ширине. Во всех случаях физики облучали детекторы фотонами с длиной волны 1550 нанометров. Эксперименты производились при двух температурах 0,76 и 2,2 кельвин. В обоих случаях в детекторе с новой структурой удалось приложить более высокие токи смещения и выйти на плато по эффективности регистрации фотонов без неконтролируемого роста темнового счета. После оптимизации нового детектора удалось достичь 78 процентов эффективности регистрации одиночных фотонов при уровне около 80 шумовых отсчетов в секунду при температуре 0,76 кельвин. При этом из-за большой ширины детектора, эффективность регистрации фотонов не зависела от их поляризации.
Такая технология может упростить и удешевить производство однофотонных детекторов, необходимых для квантовых вычислений. Другое направление развития таких детекторов — увеличение их пропускной способности. Ранее мы рассказывали, как однофотонный детектор научили считать до четырех.
Эффективное магнитное поле достигло практически 1 тесла
Физики намагнитили парамагнитный кристалл фторида церия на 39 пикосекунд с помощью импульсов терагерцового излучения с круговой поляризацией. Фотоны с такой поляризацией возбуждают в кристаллической структуре хиральные фононы, обладающие орбитальным магнитным моментом, который в свою очередь поляризует магнитный момент ионов церия так же, как и магнитное поле с напряженностью в один тесла. Исследование опубликовано в журнале Science. Фононы — квазичастицы, описывающие согласованные колебания атомов в кристаллической решетке. Взаимодействие фононов описывает многие явления в физике твердого тела — процессы теплопроводности, сверхпроводимости в рамках теории БКШ и рассеяния частиц. Они взаимодействуют и с другими квазичастицами в твердом теле, например, с магнонами: их взаимодействие наблюдали в пленке лютеций-железного граната, а также во фториде кобальта, однако в последнем варианте фононы пришлось генерировать с помощью терагерцового излучения. Фононы могут переносить не только тепловые колебания — в некоторых материалах возможна генерация хиральных фононов, которые обладают орбитальным магнитным моментом, благодаря отклонению атомов от равновесного положения и сонаправленному вращению вдоль эллиптической траектории с ненулевым орбитальным моментом. Поиск материалов с такими свойствами и изучение взаимодействия хиральных фононов помогут для реализации устройств на базе спинтроники или сверхбыстрого магнетизма. Хиральные фононы уже были обнаружены в двумерном диселениде вольфрама, а также в кристаллах киновари с правой закруткой. Проявление хиральных фононов во фториде церия CeF3 обнаружила группа американских ученых под руководством профессора Ханьюй Чжу (Hanyu Zhu) из Университета Райса. Чтобы обнаружить их взаимодействие с магнитным моментом ионов церия, авторы подвергали материал воздействию излучения частотой около 10,5 терагерц и исследовали поляризацию парамагнитных моментов церия с помощью измерения магнитооптических эффектов Керра и Фарадея. Фторид церия CeF3 был выбран не случайно — в его фононном спектре при отсутствии магнитного поля наблюдаются два дважды вырожденных уровня Eg и Eu, которые с увеличением магнитного поля расходятся по энергии по мере поляризации магнитного момента за счет эффекта Зеемана со скоростью три обратных сантиметра на тесла. Это значение расщепления уровней соответствует более чем 7 магнетонам Бора при температуре 1,9 кельвин, что превышает максимальное значение магнитного момента иона церия (III) — 2,5 магнетона Бора. Такая большая разница отметает объяснение данного механизма через гибридизацию фононных и уровней кристаллического поля ионов церия. В поставленном эксперименте кристалл фторида церия вдоль направления кристаллографической оси c в течение 0,5 пикосекунды подвергался излучению с частотой в 10,5 терагерц — при данной частоте фторид анионы в плоскости ионов церия испытывают наибольшее отклонение от равновесного состояния, тогда как остальные ионы фтора практически не изменяют своих позиций в процессе накачки. Хиральные фононы находились в резонансе с фотонами с круговой поляризацией, полученными в нелинейных органических кристаллах тозилата 4-N,N-диметилами-4′-N′-метил-стилбазолия (DAST). Чтобы убедиться, что именно хиральные фононы являются источником наблюдаемой намагниченности, исследователи провели измерение генерации второй гармоники, индуцированной терагерцовым электрическим полем. С понижением температуры время жизни когерентных фононов увеличивается, что позволило вычленить чистый вклад смещения атомов по отношению генерации второй гармоники между 10 кельвин и 250 кельвин. Более того, максимальная намагниченность образца и показатель спиральности второй гармоники изменяются одинаковым образом — а потому наблюдаемая намагниченность пропорциональна орбитальному моменту фонона. Также, варьируя мощность потока терагерцового излучения, а значит и количество хиральных фононов, физикам удалось увеличить эффективное магнитное поле до 0,93 тесла при мощности в 0,44 миллиджоуля на сантиметр квадратный, что значительно превышает предыдущие эксперименты, в которых магнитное поле было порядка миллитесла. По заверениям авторов линейный тренд зависимости эффективного магнитного поля от мощности терагерцового излучения может достичь поля в 50 тесла при использовании мощности более 10 миллиджоулей на сантиметр квадратный. Намагнитить поляризованным светом можно не только парамагнитные кристаллы, но и любые атомы с ридберговским состояниями — например, атомы гелия.