Как графен, только из золота
Шведские химики получили голден — одиночные слои золота толщиной в один атом. Для синтеза они использовали двумерный карбид титана и золота, который подвергали травлению реагентом Мураками. В результате, как пишут ученые в Nature Synthesis, получались свободные монослои золота, которые удалось охарактеризовать с помощью электронной микроскопии.
Эта новость появилась на N + 1 при поддержке ежегодной Национальной премии в области будущих технологий «Вызов». В 2023 году ее присудили за ионный квантовый процессор, магниты из высокотемпературного сверхпроводника, вычислительные устройства на основе поляритонов и оптический транзистор, а также открытия, позволившие создать новые подходы для лечения заболеваний мозга
Двумерные наноматериалы часто отличаются по свойствам от своих трехмерных аналогов. Например, свойства двумерного графена и трехмерного графита, который используют в быту, сильно отличаются. В частности, у графена выше тепло- и электропроводность, он практически прозрачный, а по прочности превосходит алмаз. За последние десять лет графен стали применять в разных областях науки и техники — от изготовления транзисторов и биосенсоров до синтеза электрокатализаторов. Подробнее про применения графена можно прочитать в нашем тексте «Гетероструктурные меньшинства».
Химики под руководством Ларса Хультмана (Lars Hultman) из Линчёпингского университета получили еще один двумерный наноматериал — монослой из золота толщиной в один атом — и назвали его голден (по аналогии с графеном). Для синтеза ученые сначала приготовили двумерный материал с брутто-формулой Ti3SiC2, в котором чередуются слои из титана, кремния и углерода. Далее химики нагрели его с металлическим золотом и обнаружили, что слои кремния заменились на слои из атомов золота.
Чтобы выделить монослои золота в чистом виде, химики смешали полученный карбид с реагентом Мураками — смесью гидроксида калия и гексацианоферрата (III) калия, — который часто используют для травления. В результате титан и углерод окислились с образованием оксидов, а золото осталось нетронутым. Причем, как пишут авторы статьи, реакцию нужно было проводить в темноте, чтобы в реакционной смеси не выделялись цианид-ионы, способные растворять золото. Кроме того, в реакционную смесь химики заранее добавили сурфактанты цистеин и бромид цетилтриметиламмония, которые должны были стабилизировать золотую поверхность.
Образцы материала после травления химики исследовали с помощью растровой электронной микроскопии. Они обнаружили, что в реакции образовались монослои золота. И хотя некоторые из них слипались или загибались, часть оставалась в виде слоев толщиной в один атом. Расстояния между атомами золота в монослоях составляли около 2,62 ангстрема — на девять процентов меньше, чем у обычного кристаллического золота.
Далее ученые исследовали, как разные методики травления влияют на структуру конечного продукта. Они показали, что без сурфактантов вместо монослоев образуются золотые кластеры и наночастицы. А концентрация реагента Мураками должна быть небольшой — иначе он атакует слои золота, и их структура нарушается.
Таким образом, химики получили новую модификацию золота, в которой атомы собраны в слои минимально возможной толщины. Как отмечают исследователи в статье, наиболее важным фактором в их подходе был подбор исходного с достаточно большим расстоянием между слоями золота — таким, чтобы сурфактанты могли легко стабилизировать его в процессе травления.
Ранее мы рассказывали о том, как наночастицы золота использовали для катализа реакции восстановления воды. А о том, как и зачем получают двумерные материалы, в интервью N + 1 рассказал Юрий Гогоци.
Коллаген для анализа выделили с помощью длительного нагрева в горячей воде
Исследователи из Вены представили новую методику радиоуглеродного анализа, которая позволяет датировать древние кости без видимого разрушения ценных образцов. Они выделили пригодный для анализа коллаген, поместив на несколько часов костные образцы в горячую воду. Полученные в дальнейшем с помощью ускорительной масс-спектрометрии радиоуглеродные даты статистически не отличались от тех, что были сделаны с помощью традиционного подхода к подготовке образцов, требующего разрушения костей. Своими наработками ученые поделились в препринте, выложенном на сайте bioRxiv.org.