Астрономы заметили аннигиляцию электрон-позитронных пар в рекордно ярком гамма-всплеске

Она протекала внутри релятивистского джета

Необычный узкий и яркий пик излучения в спектре рекордно яркого гамма-всплеска может быть объяснен аннигиляцией электрон-позитронных пар внутри джета. К такому выводу пришли астрономы, проанализировав данные наблюдений космического гамма-телескопа «Ферми». Статья опубликована в журнале Science.

Длинные гамма-всплески длятся от двух до нескольких сотен секунд, при этом высвобождается огромное количество энергии (1052—53 эрг), в предположении, что излучение изотропно. Такие события могут возникать при слиянии нейтронных звезд или при коллапсе ядра массивной звезды в финале ее жизни в черную дыру звездной массы. Гамма-кванты возникают при формировании ультрарелятивистского джета, направленного в сторону земного наблюдателя, в ходе преобразования доли кинетической или магнитной энергии, запасенной в джете, в электромагнитное излучение. При этом сами процессы генерации гамма-излучения в джете весьма плохо изучены и необходимы большие объемы наблюдательных данных для лучшей проверки существующих моделей.

Группа астрономов во главе с Марией Эдвиге Равазио (Maria Edvige Ravasio) из Университета Неймегена имени святого Радбода Утрехтского опубликовала результаты наблюдений за эволюцией ярчайшего гамма-всплеска GRB 221009 при помощи нескольких детекторов космического телескопа «Ферми». Ученые работали с данными, которые были получены, когда поток излучения несколько ослаб и детекторы перестали быть в режиме насыщения.

GRB 221009 открыли в октябре 2022 года в относительно близкой (красное смещение z=0,151) галактике. Предполагается, что всплеск возник при коллапсе массивной звезды без заметной вспышки сверхновой, сопровождаемого возникновением джета и аккреционного диска вокруг новорожденного компактного объекта, причем аномальную яркость джета объяснили за счет его структурированности. В ходе всплеска выделилось около 1055 эрг энергии в виде гамма-излучения, что считается экстремально большой величиной.

Исследователи обнаружили, что энергетические спектры содержат узкий яркий пик в области десяти мегаэлектронвольт, который возник в период с 280 до 320 секунд после срабатывания детекторов в момент начала всплеска. Анализ данных не выявил никаких аномалий в работе детекторов в этот период, а для других гамма-всплесков достоверного подобного поведения не наблюдалось. Стандартные модели, описывающие спектр гамма-излучения во время фазы мгновенного излучения всплеска, подобный пик не предсказывали.

Ученые посчитали, что имеют дело с процессами, идущими внутри джета. Это может быть взаимодействие холодных (в плане энергии) электронов с почти монохроматическими фотонами, увеличивая их энергию за счет комптоновского рассеяния. Однако более привлекательной, по мнению авторов, кажется идея возникновения излучения, смещенного в синюю сторону, за счет аннигиляции электрон-позитронных пар, которые могут рождаться в областях, где происходят процессы рассеивания энергии (ударные волны или события магнитного пересоединения). Это может быть временно существующая зона столкновения очень быстрой части джета с более медленной.

Ранее ученые заметили, как самый яркий гамма-всплеск породил рентгеновское эхо и возмутил ионосферу Земли.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Астрономы показали первый фрагмент гигантской карты неба от телескопа «Евклид»

Она содержит 14 миллионов галактик